Hamiltonian loop group actions and Verlinde factorization
نویسندگان
چکیده
منابع مشابه
Nilpotent Orbits, Normality, and Hamiltonian Group Actions
Let M be a G-covering of a nilpotent orbit in 0 where G isa complex semisimple Lie group and g = Lie(G). We prove that under Poisson bracket the space R[2] of homogeneous functions on M of degree 2 is the unique maximal semisimple Lie subalgebra of R = R{M) containing g . The action of g' ~ R[2] exponentiates to an action of the corresponding Lie group G' on a G'-cover M' of a nilpotent orbit i...
متن کاملFixed Point Formulas and Loop Group Actions
In this paper we present a new fixed point formula associated with loop group actions on infinite dimensional manifolds. This formula provides information for certain infinite dimensional situations similarly as the well known Atiyah-BottSegal-Singer’s formula does in finite dimension. A generalization of the latter to orbifolds will be used as an intermediate step. There exist extensive litera...
متن کاملSurjectivity for Hamiltonian Loop Group Spaces
Let G be a compact Lie group, and let LG denote the corresponding loop group. Let (X,ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X,ω), and assume that the moment map μ : X −→ Lg∗ is proper. We consider the function |μ|2 : X −→ R, and use a version of Morse theory to show that the inclusion map j : μ(0) −→ X induces a surjection j∗ : H∗ G(X) −→ H∗ G(μ−1(0))...
متن کاملTopological Centers and Factorization of Certain Module Actions
Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $pi_ell: Atimes Xrightarrow X$ and $pi_r: Xtimes Arightarrow X$, respectively. In this paper, we study the topological centers of the left module action $pi_{ell_n}: Atimes X^{(n)}rightarrow X^{(n)}$ and the right module action $pi_{r_n}:X^{(n)}times Arightarrow X^{(n)}$, which inherit from th...
متن کاملThe symplectic vortex equations and invariants of Hamiltonian group actions
In this paper we define invariants of Hamiltonian group actions for central regular values of the moment map. The key hypotheses are that the moment map is proper and that the ambient manifold is symplectically aspherical. The invariants are based on the symplectic vortex equations. Applications include an existence theorem for relative periodic orbits, a computation for circle actions on a com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1998
ISSN: 0022-040X
DOI: 10.4310/jdg/1214424966